

GCE

Mathematics (MEI)

Advanced Subsidiary GCE 4766

Statistics 1

Mark Scheme for June 2010

PMT

4766

June 2010

Q1						
(i)	Positive skewness			B1	1	
(ii)	Inter-quartile range	e = 10.3 - 8	B1			
	Lower limit $8.0 - 1.5 \times 2.3 = 4.55$ Upper limit $10.3 + 1.5 \times 2.3 = 13.75$				M1 for $8.0 - 1.5 \times 2.3$ M1 for $10.3 + 1.5 \times 2.3$	5
	Lowest value is 7 Highest value is 1	7.6 so at leas	A1 A1			
(iií)	Any suitable answ Eg minimum wage		E1 one comment relating to low earners			
	Highest wage earn specialist worker o	•	E1 one comment relating to high earners	2		
					TOTAL	8
Q2	4k + 6k + 6k + 4k =	= 1			M1	
(i)	20k = 1 k = 0.05				A1 NB Answer given	2
(ii)	E(X) = $1 \times 0.2 + 2 \times 0.3 + 3 \times 0.3 + 4 \times 0.2 = 2.5$ (or by inspection)				M1 for Σrp (at least 3 terms correct) A1 CAO	
	$E(X^2) = 1 \times 0.2 + 4$ Var(X) = 7.3 - 2.		M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for – their E(X) ² A1 FT their E(X) provided Var(X) > 0	5		
				TOTAL	7	
Q3 (i)	$\begin{tabular}{ c c c c } \hline Lifetime (x hours) & $0 < x \le 20$ \\ \hline $0 < x \le 30$ \\ \hline $30 < x \le 50$ \\ \hline $50 < x \le 65$ \\ \hline $65 < x \le 100$ \\ \hline \end{tabular}$	Frequency 24 13 14 21 18	Width 20 10 20 15 35	FD 1.2 1.3 0.7 1.4 0.51	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 10 hours.	
	14 13 1 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	43 50	66 70 80 1		L1 linear scales on both axes and label on vert axis W1 width of bars H1 height of bars	5

PMT

4766

June 2010

(ii)	Median lies in third class interval $(30 < x \le 50)$	B1 CAO	
	Median = 45.5th lifetime (which lies beyond 37 but not as far as 51)	E1 <i>dep</i> on B1	2
		TOTAL	7
Q4 (i)	$1 \times \frac{1}{5} = \frac{1}{5}$	M1 A1	2
(ii)	$1 \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} = \frac{24}{625} = 0.0384$	M1 For $1 \times \frac{4}{5} \times or just \frac{4}{5} \times$ M1 <i>dep</i> for fully correct product A1	3
(iii)	1 - 0.0384 = 0.9616 or $601/625$	B1	1
		TOTAL	6
Q5 (i)	Mean = $\frac{0 \times 37 + 1 \times 23 + 2 \times 11 + 3 \times 3 + 4 \times 0 + 5 \times 1}{75} = \frac{59}{75} = 0.787$	M1 A1	
	$S_{xx} = 0^{2} \times 37 + 1^{2} \times 23 + 2^{2} \times 11 + 3^{2} \times 3 + 4^{2} \times 0 + 5^{2} \times 1 - \frac{59^{2}}{75} = 72.59$ $s = \sqrt{\frac{72.59}{74}} = 0.99$	M1 for Σfx^2 s.o.i. M1 <i>dep</i> for good attempt at S_{xx} BUT NOTE M1M0 if their $S_{xx} < 0$ A1 CAO	5
(ii)	New mean = $0.787 \times \pounds 1.04 = \pounds 0.818$ or 81.8 pence	B1 ft their mean	
	New s = $0.99 \times \pounds 1.04 = \pounds 1.03$ or 103 pence	B1 ft their s B1 for correct units <i>dep</i> on at least 1 correct (ft)	3
		TOTAL	8
	Section B		
Q6 (i)	X ~ B(18, 0.1) (A) P(2 faulty tiles) = $\binom{18}{2} \times 0.1^2 \times 0.9^{16} = 0.2835$ OR from tables 0.7338-0.4503 = 0.2835	M1 $0.1^2 \times 0.9^{16}$ M1 $\binom{18}{2} \times p^2 q^{16}$ A1 CAO	
	(B) P(More than 2 faulty tiles) = $1 - 0.7338 = 0.2662$	OR: M2 for 0.7338 – 0.4503 A1 CAO M1 P(<i>X</i> ≤2) M1 <i>dep</i> for 1-P(X≤2) A1 CAO	3
		1	

June 2010

	(<i>C</i>) $E(X) = np = 18 \times 0.1 = 1.8$	M1 for product 18×0.1 A1 CAO	2
(ii)	 (A) Let p = probability that a randomly selected tile is faulty H₀: p = 0.1 H₁: p > 0.1 (B) H₁ has this form as the manufacturer believes that the number of faulty tiles may <u>increase</u>. 	 B1 for definition of <i>p</i> in context B1 for H₀ B1 for H₁ E1 	3
(iii)	Let $X \sim B(18, 0.1)$ $P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9018 = 0.0982 > 5\%$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9718 = 0.0282 < 5\%$ So critical region is {5,6,7,8,9,10,11,12,13,14,15,16,17,18}	B1 for 0.0982 B1 for 0.0282 M1 for at least one comparison with 5% A1 CAO for critical region <i>dep</i> on M1 and at least one B1	4
(iv)	4 does not lie in the critical region, (so there is insufficient evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that the number of faulty tiles has increased.	M1 for comparison A1 for conclusion in context TOTAL	2
Q7 (i)	100 100 0.95 0.05 $0.$	G1 first set of branches G1 <i>indep</i> second set of branches G1 <i>indep</i> third set of branches G1 labels	4

PMT

June 2010

(ii)	(A) P(all on time) = $0.95^3 = 0.8574$	M1 for 0.95 ³ A1 CAO	2
	(B) P(just one on time) = $0.95 \times 0.05 \times 0.4 + 0.05 \times 0.6 \times 0.05 + 0.05 \times 0.4 \times 0.6$ = 0.019 + 0.0015 + 0.012 = 0.0325	M1 first term M1 second term M1 third term A1 CAO	4
	(<i>C</i>) P(1200 is on time) = 0.95×0.95×0.95 +0.95×0.05×0.6 + 0.05×0.6×0.95 + 0.05×0.4×0. 6 = 0.857375+0.0285+0.0285+0.012= 0.926375	M1 any two terms M1 third term M1 fourth term A1 CAO	4
(iii)	P(1000 on time given 1200 on time) = P(1000 on time and 1200 on time) / P(1200 on time) = $\frac{0.95 \times 0.95 \times 0.95 + 0.95 \times 0.05 \times 0.6}{0.926375} = \frac{0.885875}{0.926375} = 0.9563$	M1 either term of numerator M1 full numerator M1 denominator A1 CAO	4
		Total	18